

ANNEX A-1 STRUCTURE AND CONTENTS OF THE FIRST YEAR AT THE "LAUREA MAGISTRALE IN INGEGNERIA GESTIONALE" (UNIVERSITA' DI PISA)

Exam	Aim and contents	Credits (Italian system)
Statistica II (Statistics II)	To provide students with knowledge, methods, interpretive skills, and programming ability with statistical software, for topics in computational statistics, such as the analysis of multivariate data and time series of interest in industrial engineer.	6
Ricerca Operativa II (Operational Research II)	Ability to develop advanced optimization models for real-world applications arising in the management of complex systems, such as industrial production and service logistics. Basic optimization software tools.	6
Gestione integrata della produzione (Integrated manufacturing systems)	To provide knowledge, methods and applications on modern integrated manufacturing systems, needed to carry out an efficient firm management. The following competences will be provided: 1) components of integrated manufacturing systems, 2) programming methods for the management of manufacturing systems, 3) basics of sizing and balancing of production lines, 4) examples of automated manufacturing processes	12
Strategie di business and management accounting (Business strategy and management accounting)	General objectives of teaching are to understand the fundamental concepts (characteristics, feasibility, introduction issues) of management control systems, processes and techniques such as enablers of strategy implementation and dynamic re-definition.	9
Modellistica e simulazione dei processi di produzione discreti (Modeling and simulation of	- To model discrete manufacturing processes such as communication systems, traffic management systems, services management systems, event	6

Cranfield University	1

1343		
discrete manufacturing	based dynamical systems;	
processes)	- To appropriately use simulation tools;	
,	- To use queue theory and Markov chain	
	theory in order to model and solve various	
	industrial issues and the associated	
	decision making problems.	
	accision making problems.	
Curriculum Digital Product Inno	ovation	
Industrial Data Design e	The students will acquire knowledge that	12
Applicazioni gestionali data	are transversal to the Master Degree in	
driven (<i>Industrial Data Design</i>	Data Science and Business Informatics. In	
and Data-Driven Management	particular, the students at the end of the	
Applications)	course will:	
	- Be aware of the whole process of value	
	generation in a data science process;	
	- Know available methods for designing	
	data-driven products and services;	
	- Understand the differences between	
	research projects and a development	
	process;	
	- Be aware of the business, environmental	
	and social impact of data science	
	solutions.	
9 credits to be selected	Solutions.	9
among those approved by the		
degree course board		
degree course source	<u> </u>	
Curriculum Fabbrica digitale - S	Smart Industry - Digital Operations	
		T
Supply Chain Management and e-	To provide knowledge and tools to design	9
business (Supply Chain	and manage the supply chain with	
Management and e-business)	particular reference to the strategic value	
	of collaborative approaches and to	
	sustainability.	
Finanza per la supply chain	The objectives of the course are double	6
(Supply Chain Finance)	folded. Firstly, provide students with the	
	financial tools for taking decisions	
	regarding equity, debts and the firm's	
	financial structure. Secondly, allow	
	students to achieve skills in the use of	
	solutions (implemented by financial	
	institutions or technology providers) for	
	the alignment of financial flows with	
	product and information flows within the	
	1	1

N SUPP	MA DIC	MIATIS
	1343	,

343		
	supply chain, in order to improve cash flow management from a supply chain perspective	
6 credits to be selected among those approved by the	F	6
degree course board		

Cranfield University

STRUCTURE AND CONTENTS OF THE SECOND YEAR AT CRANFIELD UNIVERSITY – MSc Engineering Management of Manufacturing Systems (School of Applied Sciences)

Exam	Aim and contents	Credits (UK system)	Credits (Italian system)
Operations Management	An introduction to manufacturing and service activities. Capacity, demand and load; identifying key capacity determinant; order-size mix problem; coping with changes in demand. Standard times, and how to calculate them; process analysis and supporting tools; process simplification. What quality is; standards and frameworks; quality tools; quality in the supply chain. Scheduling rules; scheduling and nested set-ups. Roles of inventory; dependent and independent demand; Economic Order Quantity; uncertain demand; inventory management systems and measures Information systems — at operational, managerial, and strategic levels; bills of material; MRP, MPRII and ERP systems Ohno's 7 wastes; Just-in-Time systems (including the Toyota Production System, and Kanbans).	10	3
Sustainability in manufacturing systems		10	3
Operations Analysis	Six Sigma, Process capability, common and special cause variability, control charts, acceptance sampling. Analysis of systems to produce simple models. IDEFO and IDEF3 and their application. Business process fundamentals and the process review. Improvement procedures, modelling methods and process models.	10	3

	Cranfield
	University
-	

1343			
	Performance measurement. Responding to and		
NA - C1	improving reliability.	40	2
Manufacturing	Design of layouts. Human centred factory design.	10	3
Systems	Group Technology & Cellular manufacturing.		
Engineering	Different approaches to factory layout such as		
	process and product layouts. Reasons for choice of		
	cellular manufacturing and benefits. Manufacturing		
	Systems modelling using discrete-event simulation.		
	Analysis of manufacturing systems using simulation.		_
Smart		10	3
Manufacturing	•	_	_
Supply Chain	Competitive manufacturing strategy concepts.	10	3
Management	Benchmarking of manufacturing system		
	performance. Manufacturing strategy in business		
	success. Strategy formation and formulation, leading		
	on to system design. Structured strategy formulation		
	and system design methodologies. Approaches to		
	strategy formulation in differing business contexts.		
	Realisation of new strategies/system designs,		
	including approaches to implementation. Case study		
	on design of competitive manufacturing strategy.		
Manufacturing	Competitive manufacturing strategy concepts.	10	3
Strategy	Benchmarking of manufacturing system		
	performance. Manufacturing strategy in business		
	success. Strategy formation and formulation, leading		
	on to system design. Structured strategy formulation		
	and system design methodologies. Approaches to		
	strategy formulation in differing business contexts.		
	Realisation of new strategies/system designs,		
	including approaches to implementation. Case study		
	on design of competitive manufacturing strategy.		
Implementing	Innovation & Technology.	10	3
Effective	Business Finance and Investment Appraisals.		
Change in	Business Case Development.		
Manufacturing	Project Management.		
	Implementing Change.		
Group project	Applying taught material to a real	40	12
	current problem; working with an		
	organisation and its staff (in some cases); developing		
	interpersonal and group-working skills. Each project		
	will be supervised by a		
	member/s of academic staff and you will be		
	expected to hold regular group meetings. At the end		
	of the project each student is expected to write a		

Cranfield University
$\overline{}$

	report and there will also be an oral presentation of your work.		
Individual thesis project	The individual thesis tests the ability of the student: (a) to define the project by reference to the scientific, technical and/or commercial literature, to undertake a critical appraisal of such literature and to provide a justification for the research. (b) to plan and manage the research programme. (c) to define the work to be carried out and to report the results in a clear manner. (d) to analyse the work, relate it to the work of others where appropriate and to be self critical. (e) to communicate the work, its results and analysis in a technical document.	80	24